AS YOU ENTER THINK ABOUT, WHAT ARE ALL
OF THE WAYS YOU
COULD SORT THE
SHAPES BELOW?

Think about it but do not share yet

EARLY CHILDHOOD MATHEMATICS:
 BUILDING A SENSE OF SPACE AND SHAPE PK - 1

Melissa Hosten mhosten@math.arizona.edu crr.math.arizona.edu

Session Goals

1.Understand the profound thinking inherent in the concepts of Space and Shape.
2.I can help children internalize and apply the principles of Space and Shape.

The child recognizes names and describes common shapes and their properties.

- Recognizes basic two-dimensional shapes when presented in different orientations.
- Uses the names of geometric shapes when describing objects found in the environment. Creates three-dimensional (solid) shapes during play.
- Compares, describes, analyzes, and sorts two- and three- dimensional objects in the environment using formal and informal mathematical language with prompting and support based on their attributes.
The child uses and demonstrates an understanding of positional terms.
- Uses and responds to spatial language.
- Describes the relative position or location of objects in relation to self or to other objects with mathematical precision.

Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres)

- Describe objects in the environment using names of shapes.
- Describe relative positions of these objects.
Analyze, compare, create, and compose shapes
- Analyze and describe 2D and 3D shapes in different sizes and orientations...
What do you notice as you look across? Type "me" in the chat to share

Reason with shapes and their attributes

- Distinguish between defining vs.
non-defining attributes.
- Build and draw shapes to possess defining attributes.
- Compose 2D or 3D shapes to create a composite shape.
- Partition circles and rectangles into two and four equal shares.
- Describe the partitioned shares using fractional words.
n

BIG Ideas

For Space

The Train Ride

The Train Ride

"Where will the bridge be?"
"OK, then the Monkey Cage has to be over here by the chair."

Big Ideas \#1

Relationships between objects and places can be described with mathematical precision

Morning Circle time

Count

Describe

Geometry of Letters

HOW MANY RED LADYBUG ROCKS DO YOU COUNT?

WHAT SHALL WE DESCRIBE?

Use the shapes to make the letter b

Representing space

"where" can be described

\rightarrow Building (represents location, movement, and direction)
\rightarrow Talking
\rightarrow Drawing
\rightarrow Writing

How do you reinforce these daily?Type "me" in the chat to share

By preschool children can:

\rightarrow Locate items
\rightarrow Decide how to get from here to there

And they are beginning to represent space.
\rightarrow By building models - FIRST
\rightarrow By drawing maps - AFTER
\rightarrow By describing the relationship between objects and locations (using words and using gestures) - ALWAYS
 the chat

Is THIS THE SAME POKEMON?

to share

CAN WE DESCRIBE IT?

Space reflects a point of View/ PERSPECTIVE

Space descriptions change based on the position of the describer
\rightarrow viewing from different positions
\rightarrow right or left

Big Ideas \#1 \& \#2

Relationships between objects and places can be described with mathematical precision

Our own experiences of space and two-dimensional representations of space reflect a specific point of view

THE IDEA OF "FIT" Transiormations

s/ide
」

MANIPULATING SPACE (PHYSICALLY -

 THEN MENTALLY)Cut each shape out. Use them to make squares. Now look at the picture and do the same in your mind

TANGRAM TASKS

Big Ideas \#1, \#2, \& \#3

Relationships between objects and places can be described with mathematical precision

Our own experiences of space and two-dimensional representations of space reflect a specific point of view

Spatial relationships can be visualized and manipulated mentally

Let's Reflect

What centers do you already have that support the exploration of Big Idea \#1?

What centers do you already have that support the exploration of Big Idea \#2?

What centers do you already have that support the exploration of Big Idea \#3?

The Important Book

Cones
Have one tip
Can hold an ice cream scoop
Have a curvy part to hold

Have a flat part
But the most important thing about a cone is it has one tip

The Important Book

- Children need to judge the importance of a shape's characteristics.

Big Ideas \#1

Shapes can be defined and classified by their attributes

${ }^{* *}$ Attributes are outside of the shape **Properties are inside of the shape **Precision in language and naming is VITAL!

Grade K Shape Footprints

\sum DIY Finger Paint

- Children need to discern between 2D and 3D in a relevant and personal way.
- Children need to feel empowered to discover and be curious about mathematics.

Big Ideas \#1 \& \#2

Shapes can be defined and classified by their attributes

The flat faces of a solid (3-dimensional shape) are two-dimensional shapes (footprints)

Shapes can make new shapes. New shapes can be found inside of SHAPES.

TANGRAM TASkS \& EARLY
Geometry Pattern Block Task

Use the online manipulatives to make an image.

Breakout Room 1

Pattern Blocks:
https://www.mathlearningcenter.org/apps/pattern-shapes

Tangrams:
https://toytheater.com/tangram/

Breakout Room 2

Pattern Blocks:
https://www.mathlearningcenter.org/apps/pattern-shapes

Breakout Room 3

Pattern Blocks:
https://www.mathlearningcenter.org/apps/pattern-shapes

Breakout Room 4

Pattern Blocks:
https://www.mathlearningcenter.org/apps/pattern-shapes

Tangrams:
https://toytheater.com/tangram/

Breakout Room 5

Pattern Blocks:
https://www.mathlearningcenter.org/apps/pattern-shapes

BREAKOUT Room 6

Pattern Blocks:
https://www.mathlearningcenter.org/apps/pattern-shapes

Breakout Room 7

Pattern Blocks:
https://www.mathlearningcenter.org/apps/pattern-shapes

Tangrams:

https://toytheater.com/tangram/

BREAKOUT ROOM 8

Pattern Blocks:
https://www.mathlearningcenter.org/apps/pattern-shapes

Scavenger Hunt

"me" in

the chat
to share

Big Ideas \#1, \#2, \& \#3

Shapes can be defined and classified by their attributes

The flat faces of a solid (3-dimensional shape) as two-dimensional shapes (footprints)

Shapes can be combined and separated (composed and decomposed) to make new shapes

Let's Reflect

What centers do you already have that support the exploration of Big Idea \#1?

What centers do you already have that support the exploration of Big Idea \#2?

What centers do you already have that support the exploration of Big Idea \#3?

TEACHING IMPLICATIONS...

Show shapes in different orientations
Connect shapes to their world
Connect their world to shapes
Space and Shape centers all year

Equal Access

Life Experiences

WHEN IS IT APPROPRIATE TO ASK FOR A DEFINITION OR GIVE ONE?

A definition of a concept is only possible if one knows, to some extent, the thing that is to be defined.

Pierre van Hiele

How can you define a thing before you know what you have to define? Most definitions are not preconceived but the finished touch of the organizing activity.
The child should not be deprived of this privilege...

Type "me" in the chat to share
What is the same? What is different?
What is the same and different in how we learn numbers and how we learn shapes?

Session Goals

1.Understand the profound thinking inherent in the concepts of Space and Shape.
2.I can help children internalize and apply the principles of Space and Shape.

YOUR OPINION MATTERS!

Please complete the survey! Feel free to share feedback directly as well: mhosten@math.arizona.edu

SEssion Description

Early Childhood Mathematics: Building a sense of space and shape PK - K
How do preschool children build a sense of space and shape, and why do some children have a more robust sense than others? We will explore the ways a child engages in understanding space and shape and ways that we can fortify this understanding in our preschool classrooms.

